Learning Gene Regulatory Network from Microarrays Based on Bayesian Network

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring Gene Regulatory Network from Bayesian Network Model Based on Re-Sampling

Nowadays, gene chip technology has rapidly produced a wealth of information about gene expression activities. But the time-series expression data present a phenomenon that the number of genes is in thousands and the number of experimental data is only a few dozen. For such cases, it is difficult to learn network structure from such data. And the result is not ideal. So it needs to take measures...

متن کامل

Inference of Gene Regulatory Network Based on Local Bayesian Networks

The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-...

متن کامل

Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method

Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up fo...

متن کامل

Inferring Gene Regulatory Networks from Gene Expression Data by a Dynamic Bayesian Network-Based Model

Enabled by recent advances in bioinformatics, the inference of gene regulatory networks (GRNs) from gene expression data has garnered much interest from researchers. This is due to the need of researchers to understand the dynamic behavior and uncover the vast information lay hidden within the networks. In this regard, dynamic Bayesian network (DBN) is extensively used to infer GRNs due to its ...

متن کامل

Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining

We present two algorithms for learning large-scale gene regulatory networks from microarray data: a modified informationtheory-based Bayesian network algorithm and a modified association rule algorithm. Simulation-based evaluation using six datasets indicated that both algorithms outperformed their unmodified counterparts, especially when analyzing large numbers of genes. Both algorithms learne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: DEStech Transactions on Computer Science and Engineering

سال: 2017

ISSN: 2475-8841

DOI: 10.12783/dtcse/aice-ncs2016/5646